Network Optimization and Control
نویسندگان
چکیده
We study how protocol design for various functionalities within a communication network architecture can be viewed as a distributed resource allocation problem. This involves understanding what resources are, how to allocate them fairly, and perhaps most importantly, how to achieve this goal in a distributed and stable fashion. We start with ideas of a centralized optimization framework and show how congestion control, routing and scheduling in wired and wireless networks can be thought of as fair resource allocation. We then move to the study of controllers that allow a decentralized solution of this problem. These controllers are the analytical equivalent of protocols in use on the Internet today, and we describe existing protocols as realizations of such controllers. The Internet is a dynamic system with feedback delays and flows that arrive and depart, which means that stability of the system cannot be taken for granted. We show how to incorporate stability into protocols, and thus, prevent undesirable network behavior. Finally, we consider a futuristic scenario where users are aware of the effects of their actions and try to game the system. We will see that the optimization framework is remarkably robust even to such gaming.
منابع مشابه
Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling
Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...
متن کاملFrequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...
متن کاملA Neural Network-PSO Based Control for Brushless DC Motors for Minimizing Commutation Torque Ripple
This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of voltage and commutation time is estimated by a neural network and optimized with an optimization method named particle swarm optimization (PSO) algorithm analysis. The goal of optimizati...
متن کاملOptimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients
Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations and Trends in Networking
دوره 2 شماره
صفحات -
تاریخ انتشار 2007